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Abstract. It is proved that subbarrier relativistic effects, which are due to the magnitude of
quasi-momentum, give a significant contribution to the penetration coefficient. For instance,
an account of these effects for penetration of low-energyπ+ mesons through the Coulomb
barrier of the238U nucleus would increase the penetration coefficient by 20% compared with
the nonrelativistic value. We suggest to calculate the tunnelling ability by the use of a quasi-
relativistic Schr̈odinger equation which we obtain as a reduction of the Dirac or Klein–Gordon
equation, and it coincides with the reduced Bethe–Salpeter equation. Standard nonrelativistic
expressions for the current and boundary conditions are revised.

1. Introduction

The tunnelling problem has been the subject of intensive investigations since the time
quantum mechanics arose, due to its various applications ranging from quantum field theory
(vacuum–vacuum tunnelling) to technical problems (tunnelling in diodes). The standard
textbook way of describing this phenomenon is through the solution of the nonrelativistic
Schr̈odinger equation (in the presence of the relevant potential) followed by a calculation of
the penetration ability. The use of thenonrelativisticequation comes from the assumption
that thenonrelativisticapproximation of energy conservation is valid,√

m2+ k2+ V (r) = E0
kin +m ⇒ k2

2m
+ V (r) = E0

kin (1)

whereE0
kin is the initial kinetic energy,V (r) is the potential energy,m is the particle mass,

and the system of units ¯h = c = 1 is adopted. It is a satisfactory approach to the problem
outside the barrier region whereV (r) 6 E0

kin � m. However, it is not satisfactory for a
range of magnitudes ofV (r) andE0

kin in the subbarrier region. Indeed, in the subbarrier
region the momentum becomes imaginaryk = iq, whereq = [2m(V (r) − E0

kin)]
1/2 is the

so-called quasi-momentum. Then the validity of approximation (1) can change drastically
for a strong enough potential (V (r)→ m) and small initial kinetic energy (E0

kin → 0) when
the quasi-momentum becomes comparable with the particle mass,m. This means that the
energy balance might be controlled by (for instance, for the Coulomb potential in the region
wherer → 0)√

m2− q2+ V (r) = E0
kin +m. (2)
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Nevertheless we investigate a particle which moves very slowly in the ‘free’ domain (i.e.
whereV (r) = 0). A small initial energy guarantees the absence of the Klein paradox [1],
and therefore pair creation along the penetration path is of no significance. Of course, the
latter statement is not valid for the region withV (r) > 2m+ E0

kin (the region of the Klein
paradox) where a single-particle description is no more applicable.

In the present paper we deal with a specific relativistic phenomenon which arises due
to large values of the quasi-momentum in the subbarrier domain and small values of the
free momentumkin, wherek2

in/2m = E0
kin far from the barrier. To investigate this regime

we would like to have a relativistic equation providing a reliable probabilistic treatment for
spinless particles [2].

A suitable equation can be obtained by splitting the Dirac equation into positive-energy
and negative-energy subspaces or by a reduction of the Klein–Gordon equation to positive-
energy states [3]. Both approaches are valid for the limited kinematic regionEkin 6 m. In
the presence of an external scalar fieldV , which could be regarded also as a zero component
of a four-vector, the equation reads

ih̄
∂ψ(t, r)

∂t
= (H0+ V )ψ(t, r) (3)

where

H0 =
√
m2+ k̂2 (4)

with k̂j = −ih̄∂/∂xj and j = 1, 2, 3. At the same time equation (3) is an approximation
to the Bethe–Salpeter equation for spinless particles when the kernel is evaluated for the
instantaneous interaction. It has been widely used in studying the quarkonium problem [4].

For further applications it should be mentioned that the eigenfunctions of the free particle
operatorH0 are the plane wavesψ(r) = c(k)eik·r, with eigenvaluesE = √m2+ k2, and
also exponentially increasing and decreasing functionsψ(r) = c(q)eq·r, with eigenvalues
E =

√
m2− q2 (|q| 6m). As shown in [5], the set of such solutions for positive energies

forms a linear space which can be transformed into a Hilbert space. The features of the
non-local operatorH0 are discussed in more detail in [6].

In momentum representation the action of the operatorH0(r) on the wavefunction is

H0ψ(t, r) = 1

(2π)3

∫
d3k eikr

√
m2+ k2ψ(t,k). (5)

This Hamiltonian has been exploited with various potentials to describe two-particle [7] and
many-particle bound states [8].

The paper is organized in the following way. Starting from the Dirac equation we
obtain in section 2.1 equation (3) for the energy sectorE0

kin + V 6 2m. The nonrelativistic
approximations to the Klein–Gordon equation are discussed in section 2.2. Based on
equation (3) in section 3.1 we revise the standard expressions for the current and the
boundary conditions. In section 3.2 we apply these results to investigate the penetration
of a particle to a barrier of constant height. Section 3.3 is devoted to an investigation of
the penetration of positively charged particles to the Coulomb barrier of a heavy nucleus.
Finally in section 4, the results are discussed and summarized.
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2. Nonrelativistic approximations of the relativistic equations

2.1. Splitting of the Dirac equation

In this section we obtain the quasi-relativistic Schrödinger-like equation as a result of step-
by-step operations:

(1) reduction of the bispinor Dirac equation to the spinor form;
(2) factorization of the spinor Dirac operator into a product where one factor corresponds

to the positive energy states and the other one to negative energy states;
(3) to project to positive energy states we consider a special kind of external field

A = {A0(t),A(r)} so that all relativistic corrections can be represented in a condensed
form.

There are two basic methods used to obtain the nonrelativistic approximations of the
Dirac equation: the Pauli elimination method [9, 10] and the Foldy–Wouthuysen unitary
transformation method [11]. It should be mentioned that the Pauli elimination method
[9] has been troubled by some nonhermiticity problems, but they have been overcome by
Akhiezer and Berestetsky [10] for the second-order corrections(∝ 1/c2). In the present
paper we explore the extended or generalized elimination scheme applied to the Dirac [12]
and Klein–Gordon equation as well. This formalism makes it possible to take into account
all dynamic relativistic corrections [3].

The Dirac equation for a spin-1
2 particle in an external electromagnetic field

{A0(t, r),A(t, r)}
reads [

i
∂

∂t
− eA0

]
9 = [α · (p̂− eA)+ βm]9 (6)

where

p̂ = −i∇ αi =
(

0 σi
σi 0

)
β =

(
I 0
0 −I

)
the σi (i = 1, 2, 3) are the Pauli matrices andI is the 2× 2 unit matrix.

Let us introduce the dimensionless energy and momentum-type operators

ε̂ = 1

2m

(
i
∂

∂t
− eA0

)
(7)

π̂σ = 1

2m
σ · (p̂− eA). (8)

We now go over from the initial bispinor9 to slowly varying spinorsφ(t, r) andχ(t, r)
by means of the unitary transformation

9 =
(
φ

χ

)
exp(−imt) (9)

which means that from now on we investigate the positive energy states. It is clear that
after this transformation the operator i∂/∂t applied to spinorφ becomes the operator of
the kinetic energyEkin = E −m (E is the total energy) and the operators defined through
equations (7) and (8) after the action on the upper spinor have the following orders of
magnitude:

ε̂φ ≈ Ekin − eA0

2m
φ ≈ 1

c2
φ (10)

π̂σ φ ≈ |p− eA|
2m

φ ≈ 1

c
φ. (11)
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Using definitions (7) and (8), the Dirac equation (6) is written as a system of coupled
equations for spinorsφ andχ

ε̂φ = π̂σ χ (12)

(I + ε̂)χ = π̂σ φ. (13)

The solution of equation (13) may be expressed in the following symbolic form

χ = (I + ε̂)−1π̂σ φ (14)

where the function of the operator here and below is defined by the series corresponding
to this function. As will be seen, satisfying the conditionsEkin − eA0 < 2m and
|p− eA| < 2m is quite enough for convergence of the Taylor series in operatorsε̂, π̂σ and
their combinations. On the other hand, one can regard all functions of the operators under
consideration here in the spirit of the nonrelativistic approximation and then truncate the
series for the required order of approximation. In this case the convergence of the series is
out of the question.

The problem of the existence of an inverse operator appears throughout further
considerations, and we state the following lemma.

Lemma. A positive-definite operator always has an inverse one.

In particular, if the differential equation in operator form reads

B̂Âφ(r, t) = 0 (15)

andB̂ is a positive-definite operator (no negative and zero eigenvalues, or/and the equation
B̂φ = bφ implies thatb > 0), then the reduced equation

Âφ(r, t) = 0 (16)

is valid.
An intuitive proof of this reduction may be carried out if we employ an iteration

procedure to the equation(I − δ̂)Âφ = 0, where δ̂ is small in comparison withI . In
the iteration we obtain the sequence

Âφ = δ̂Âφ Âφ = δ̂2Âφ . . . Âφ = δ̂nÂφ ⇒ Âφ = 0 (17)

which leads to equation (16). Having excluded the ‘small’ spinorχ from equations (12)
and (13), we obtain

ε̂φ = π̂σ (I + ε̂)−1π̂σ φ. (18)

Equation (18) is relative to the upper spinorφ and should not be regarded as the Schrödinger
equation since the spinorφ is not normalized to unity. Indeed, it follows from the
normalization of the initial bispinor that∫

[φ+φ + φ+π̂σ (I + ε̂)−2π̂σ φ] d3r = 1. (19)

Taking this as a guide [10] it is reasonable to go over to a new normalized spinor

f (r, t) = [I + π̂σ (I + ε̂)−2π̂σ ]1/2φ(r, t) (20)

where the last transformation is a Hermitian one. Indeed, the momentum-type operatorπ̂σ
is Hermitian. Then, if one regards equation (18) as an iteration algorithm for evaluating the
operatorε̂, taking into account, equations (10) and (11), the leading approximation is

ε̂φ = π̂2
σφ. (21)
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Therefore, after a number of iteration steps the energy-type operatorε̂ is represented to any
order of approximation as a sum of powersπ̂2

σ and thus is Hermitian with respect to the
state space of spinorsφ. So, the Hermitian transformation (20) gives us a new spinorf

which is rigorously normalized to unity∫
f +f d3r = 1. (22)

Having expressedφ via f and substituted it into equation (18), we obtain a new equation
for the spinorf ,

ε̂[I + π̂σ (I + ε̂)−2π̂σ ]−1/2f (r, t) = π̂σ (I + ε̂)−1π̂σ [I + π̂σ (I + ε̂)−2π̂σ ]−1/2f (r, t). (23)

Equation (23) has been obtained to an arbitrary order of approximation (or formally even
without any approximation). Thus, the bispinor Dirac equation (6) was transformed in a
condensed form to the spinor equation (23). It is quite reasonable to look for nonrelativistic
spinor approximations to the Dirac equation on the basis of equation (23).

Let us study the structure of equation (23). For this purpose we assume the special case
of an external field

A = (A0(t),A(r)) (24)

more formally it means

[ε̂, π̂σ ] = 0. (25)

Using this condition, one can make further transformations on equation (23). We consider
equation (23) in view of the above lemma regardingB̂ as the operator

B̂ ≡ [I + π̂σ (I + ε̂)−2π̂σ ]−1/2 ≡ I + δ̂. (26)

In fact, the definition ofδ̂ in this equation implies the series

δ̂ = (I + ε̂)−2[− 1
2π̂

2
σ + 3

8π̂
4
σ − 15

48π̂
6
σ + . . .] ∝ 1

c2 +O( 1
c2 ) (27)

and thus the operator(I + δ̂) is indeed positive-definite.
With the commutator (25) and the above definition ofB̂, equation (23) reduces to

ε̂(I + ε̂)f (r, t) = π̂2
σ f (r, t). (28)

It should be pointed out that in the process of deriving the last equation we use the
commutation of the operator̂B (defined by equation (26)) with the first three factors on
the right-hand side of equation (23). However, in the general case, when equation (25)
is absent, commutinĝB to the left yields new terms proportional to the derivatives of the
external field.

At the next level of transformations one can represent equation (28) with respect to the
commutation relation (25) in the form

[ε̂ − ε−(π̂2
σ )][ ε̂ − ε+(π̂2

σ )]f (r, t) = 0 (29)

whereε−(x) andε+(x) are

ε−(π̂2
σ ) = − 1

2[I +
√
I + 4π̂2

σ ] (30)

ε+(π̂2
σ ) = 1

2[−I +
√
I + 4π̂2

σ ]. (31)

The first operator functionε−(π̂2
σ ) corresponds to the negative energy states and the second

one ε+(π̂2
σ ) to the positive energy states. Thus, for the special kind of external field (5),

there is a possibility to factorize (or to split) the spinor Dirac operator in an explicit manner
to factors which determine the positive and negative energy states.
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Meanwhile, it is evident that the negative energy operator (the first bracket in
equation (29)) is positive-definite and has the structure(I + δ̂). Indeed, we have

ε̂ − ε−
(
π̂2
σ

) ≈ I + ε̂ + π̂2
σ +O

(
1

c2

)
. (32)

Thus, according to the lemma, equation (29) can be reduced to

[ε̂ − ε+(π̂2
σ )]f (r, t) = 0 (33)

or

ε̂f (r, t) = 1
2[
√
I + 4π̂2

σ − I ]f (r, t). (34)

So we obtain a Dirac spinor equation for the particles with positive energy(ε+(x) > 0).
In the generally accepted notation equation (34) appears as

i
∂ψ

∂t
= (H (1)

D (r)+ V (t))ψ (35)

with the Hamiltonian

H
(1)
D (r) =

√
m2+ (−i∇− eA(r))2− eσ ·B(r) V (t) = eA0(t) (36)

whereB = ∇ ×A. We have made reverse unitary transformation of the wavefunction

ψ = f exp(−imt) (37)

from which, with to equation (22), follows that∫
ψ+ψ d3r = 1. (38)

Under the square root in equation (36) one can recognize the Hamiltonian of the Pauli
equation. On the other hand, the Pauli equation can be obtained if we preserve the first
term only in the series corresponding to this root. The next two terms of this series coincide
with the well known second and fourth order relativistic corrections.

Equations (35) and (36) may be regarded as a rigorous Dirac spinor equation for energy-
and momentum-type operators that satisfy the inequality

‖ ε̂ ‖< 1 ‖ π̂2
σ ‖< 1 (39)

which is quite enough for convergence of the above series. For weak fields it means that
the particle energy sector is restricted to 0< E < 2m, whereE = (m2+ p2)1/2.

In the case of an arbitrary external electromagnetic field, the new terms, which are
proportional to the derivatives of the field, appear in addition to the Hamiltonian (36). These
new terms are the commutation products which are due to transferring the wavefunction
normalization factor (square brackets in equation (23)) to the left position, with the aim of
extracting it as a positive-definite operator (see the lemma). Then, in the explicit form they
appear as an expansion in powers of 1/c. For example, the Hamiltonian, which includes
the second order field corrections, reads as

H(2) = H(1)
D (t, r)+ eA0(t, r)− e

8m2
{∇ ·E + iσ · (∇ ×E)+ 2σ · [E × (−i∇− eA)]}

(40)

whereE = −∇A0− ∂A/∂t .
The higher-order corrections yield higher-order derivatives of the external field. When

dealing with nonrelativistic approximations in the case of a smooth external field, it is
enough in practice to take into account the third- or fourth-order field derivatives.
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It should be pointed out that the use of the Hamiltonian

H nonrel
D (t, r) =

√
m2+ (−i∇− eA(t, r))2− eσ ·B(t, r)+ V (t, r) (41)

implies that the potentialV (t, r) can be regarded firstly in a sense of the nonrelativistic
approximation (see equation (40)). Then, it equals eA0(t, r) plus a truncated series of
the field derivatives (expansion in powers of 1/c) where all terms can be calculated in
principle to any fixed order. On the other hand,V (t, r) can be taken as an effective or
phenomenological potential in place of the nonrelativistic approximation.

2.2. Reduction of the Klein–Gordon equation

The same scheme may be applied to the Klein–Gordon equation describing a scalar particle
in the external electromagnetic field{A0(t, r),A(t, r)}(

i
∂

∂t
− eA0

)2

9 = [(p̂− eA)2+m2]9. (42)

We introduce the dimensionless energy and momentum-type operators

ε̂ = 1

2m

(
i
∂

∂t
− eA0

)
(43)

π̂i = 1

2m
(p̂i − eAi). (44)

After transforming the wavefunction to the ‘slow’ one

9 = φe−imt (45)

we arrive at the equation

ε̂(I + ε̂)φ(r, t) = π̂2φ(r, t) (46)

which has the same structure as equation (28). Overcoming the problem of normalization
of the wavefunction in the same manner as in the spin-particle case for a particular external
field A = (A0(t),A(r)), we factorize equation (46) as

[ε̂ − ε−(π̂2)][ ε̂ − ε+(π̂2)]φ(r, t) = 0 (47)

whereε−(x) andε+(x) are

ε−(π̂2) = − 1
2[I +

√
I + 4π̂2] (48)

ε+(π̂2) = 1
2[−I +

√
I + 4π̂2]. (49)

Obviously, the first operator factor in equation (47) (or the Hamiltonian (48)) corresponds
to the negative energy states, whereas the second operator factor (or the Hamiltonian (49))
corresponds to the positive energy states. It is straightforward to prove in the same manner
as was done for equations (26) and (27) that the first operator factor in equation (47) is
positive-definite. Therefore (see the lemma), we come to the reduced equation

ε̂ φ(r, t) = ε+(π̂2)φ(r, t). (50)

In the generally accepted notation it appears as

i
∂ψ

∂t
= [

√
m2+ (−i∇− eA(r))2+ eA0(t)]ψ (51)

where we have made a transformation inverse to equation (45) on the wavefunctionφ. The
new wavefunctionψ obtained is normalized exactly to unity.
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For a general external field the structure of the Hamiltonian in equation (51) is still
unchanged, except that there appear new terms proportional to the derivatives of the field. In
the same way as discussed at the end of the previous section, the Klein–Gordon Hamiltonian
in the nonrelativistic approximation has the form

H nonrel
KG =

√
m2+ (−i∇− eA(t, r))2+ V (t, r) (52)

whereV (t, r) = eA0(t, r)+ (truncated series), or V (t, r) is an effective potential which
arises from a phenomenological approach.

If the vector components of the external field are absent (thus there are no spin effects),
the Hamiltonian (36) degenerates to a scalar operator and coincides literally with the
Hamiltonian of equation (51). In the next sections we explore this Hamiltonian in order to
investigate tunnelling phenomena.

3. Subbarrier relativistic effects

3.1. Continuity equation and boundary condition

The Schr̈odinger equation, as well as other equations with the first derivative in time, appear
attractive due to the fact that they admit of a probabilistic interpretation. Specifically, this
interpretation is achieved because it is possible to construct the continuity equation

∂ρ(t, r)

∂t
+ div j(t, r) = 0. (53)

It can be derived from the Lagrangian, if any, or directly from the equation of motion. In
this section we use equation (51) whenA = 0 and rewrite it in a somewhat generalized
form regarding the term eA0 as an external potentialV :

i
∂ψ

∂t
= (

√
m2−∇2+ V )ψ. (54)

From a combination of this equation and its complex conjugate we obtain

ρ(t, r) = ψ∗(t, r)ψ(t, r) (55)

i.e. the ordinary quantum-mechanical probability density, and also

div j(t, r) = −i(ψH0ψ
∗ − ψ∗H0ψ). (56)

The solution of this equation for the currentj (see the appendix for details) can be presented
as

ji(t, r) =
[
k̂i (r)− k̂i (r′)
H0(r)+H0(r′)

ψ(t, r)ψ∗(t, r′)

]
r′=r

(57)

wherek̂i (r′) = −i∂/∂x ′i andH0(r
′) =

√
m2+ k̂2(r′).

For the plane waveψ(t, r) = α exp(−iEt + ik · r) with the corresponding probability
densityρ = α∗α, we get using equation (57),

j = k√
m2+ k2

α∗α = vrelρ. (58)

This result agrees with the generally accepted notion that for a free-like propagation a
probability flow is the probability density multiplied by the particle velocity, which now is
a relativistic one.
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Let us consider stationary processes and, for simplicity, take only one space dimension.
In this case equation (54) is rewritten as

H0ψ(x) = [E − V (x)]ψ(x) (59)

whereH0 =
√
m2−∇2 and ψ(t, x) = exp(−iEt)ψ(x). To preserve a probabilistic

interpretation we have to assume that the wavefunction is continuous on the boundaries of
spatial regions. The boundary conditions on the derivatives can be found from equation (59).
Integrating equation (59) from(x0−1) to (x0+1), we obtain∫ x0+1

x0−1
(

√
k̂2+m2−m)ψ(x) dx =

∫ x0+1

x0−1
[E0

kin − V (x)]ψ(x) dx (60)

whereE0
kin = E − m. Due to the continuity ofψ(x) and the finiteness of the potential

energy jump on the boundaryx0 of two regions, the right-hand side integral is zero in the
limit 1 → 0. After an identical transformation of the integrand in the left-hand side of
equation (60) we obtain∫ x0+1

x0−1

k̂2√
k̂2+m2+m

ψ(x) dx = 0. (61)

This equation just gives the boundary conditions for the derivatives of the wavefunction

k̂√
k̂2+m2+m

ψ(x0− 0) = k̂√
k̂2+m2+m

ψ(x0+ 0). (62)

It is clear that in coordinate representation all derivatives ofψ(x) participate in this relation.
For the plane wave case the operator (62) is transformed simply to the factork/(E + m).
It is also obvious that for a momentum small compared with the mass, equation (62) is
transformed to the ordinary nonrelativistic condition of continuity of the derivatives.

3.2. Tunnelling through a constant-height barrier

The existence of the revised expressions for the current (57) and for the boundary condition
(62) permits us to proceed with the description of the tunnelling phenomenon on the basis
of the stationary quasi-relativistic Schrödinger-like equation (59), i.e.

(
√
m2−∇2+ V )ψ = Eψ. (63)

We solve the problem of tunnelling through a constant-height barrier according to a
standard scheme [13, 14], i.e. divide the space axis into three regions (−∞ < x < 0, 0 <
x < L, L < x < +∞, see figure 1) and find the solution to equation (63) for each of them.
Then for each region we have:

ψ1(x) = exp(ik1x)+ B exp(−ik1x) (64)

ψ2(x) = α exp(qx)+ β exp(−qx) (65)

ψ3(x) = a exp(ik1x) (66)

wherek1 is the initial momentum of an incident particle, and the amplitude of an incident
wave equals unity. The subbarrier quasi-momentum, according to equation (63), equals

q =
√
(2m+ E0

kin − V0)(V0− E0
kin). (67)

From the boundary condition atx0 = 0 andx0 = L,

ψ(x0− 0) = ψ(x0+ 0) (68)
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Figure 1. Potential barrier of constant heightV0; L is barrier width,T ≡ E0
kin is the kinetic

energy of an incident particle.

and its ‘derivatives’ (using equation (62)) we obtain four linear equations for the four
unknown coefficientsB, α, β, a. This set of equations is essentially the same as in the
nonrelativistic case.

Our aim is to find the penetration coefficient for the barrier determined as the ratio of
currents—the final (out) to the initial (incident):

D = jout

jin
. (69)

Using equation (57) we find the relevant currents

jin = k1

E
jout = a∗a k1

E
. (70)

Thus, it appears that the penetration coefficient is expressed, as in the nonrelativistic case,
only through the amplitude of the transmitted (out) wave

D = a∗a. (71)

Then, through straightforward calculations we obtain the penetration coefficients for a barrier
of constant height:

Drel =
[

1+
(
mV0

k1q

)2

sinh2 qL

]−1

E0
kin < V0 (72)

Drel =
[

1+
(
mV0

k1

)2
]−1

E0
kin = V0 (73)

Drel =
[

1+
(
mV0

k1k2

)2

sin2 k2L

]−1

E0
kin > V0 (74)

where

k2 =
√
(E − V0)2−m2 (75)

is the above-barrier momentum. In the nonrelativistic limit we have

k1→ k1 =
√

2mE0
kin q → q =

√
2m(V − E0

kin) k2→ k2 =
√

2m(E0
kin − V )

so that the penetration coefficients (72)–(74) reduce to the standard nonrelativistic
expressions [13, 14]. The expressions (72)–(74) coincide literally with the correspondent
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Figure 2. Dependence of the constant-height barrier penetration coefficient (V0 = 200 eV,
L = 25 Å) on the kinetic energyT ≡ E0

kin (in units of V0) of an incident particle of mass
m = 400 eV c−2 ' 0.8× 10−3 mel (wheremel is the electron mass): relativistic consideration-
full curve, nonrelativistic one-broken curve; (a) for the region 06 T/V0 6 3.0; (b) for the
region 06 T/V0 6 0.6.

penetration coefficients from [15], where the problem has been solved by the use of the
Dirac equation for a spin-up electron.

Let us give examples of calculating the penetration coefficient for different sets of
parameters. To emphasize the role of relativistic effects in the tunnelling process, we take
in the first example parameters which are different from the typical atomic or solid-state
ones: barrier heightV0 = 200 eV, barrier widthL = 25 Å and the effective mass of a
tunnelling the particlemeff = 400 eV c−2 ' 0.8×10−3 mel, wheremel is the electron mass.
The resulting penetration coefficients are shown in figure 2, relativistically (full curve) and
nonrelativistically (broken curve), where the kinetic energyT ≡ E0

kin of the incident particle
is given on thex-axis in units of the barrier height. A more pronounced difference between
the approaches to the tunnelling problem is seen in the ratio of the corresponding penetration
coefficientsDrel/Dnonrel. For the same set of parameters this ratio is shown in figure 3(a)
as a function of the kinetic energy of the incident particleE0

kin.
Figure 3 demonstrates that when the initial kinetic energy of the incident particle

decreases, the ratio of penetration coefficients increases. This, at first sight, seems to
be a paradox since it is well known that relativistic effects arise when the momentum
is comparable with the particle mass. However, it becomes obvious that there is no
contradiction. The point is that the difference betweenDrel andDnonrel is determined by a
subbarrier quasi-momentumq which, as it follows from equation (67), increases with the
decrease of the initial kinetic energyE0

kin.
The real experimental situation often satisfies the condition (quasiclassical approxima-

tion)

qL� 1 (76)
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Figure 3. Penetration coefficient ratioDrel/Dnonrel as a function of the kinetic energy of an
incident particleT ≡ E0

kin (in units ofV0): (a) V0 = 200 eV,m = 400 eV c−2 ' 0.8×10−3 mel;
L = 25 Å(broken curve),L = 35 Å(full curve). (b) V0 = 100 eV, m = 104 eV c−2 '
0.02mel;L = 10 Å(broken curve),L = 30 Å(full curve). (c) V0 = 20 eV, m = 5000 eV c−2 '
0.01mel (broken curve),m = 1000 eV c−2 ' 2× 10−3 mel (full curve),L = 25 Å.

which is realizable atE0
kin << V0. In this case the penetration coefficient (72) is rewritten

as

Drel ' 16
E0

kin

V0

(
1− E

0
kin

V0

)(
1+ E

0
kin

2m

)(
1− V0− E0

kin

2m

)
exp(−2qL). (77)

In the case of an extremely small initial kinetic energy and height of the barrier in comparison
with the mass of the particle, i.e.E0

kin � m, V0 � m, relativistic corrections of the
pre-exponential factor in equation (77) (the second and third brackets) can be neglected.
Taking into account the first relativistic correction, the subbarrier quasi-momentum can be
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represented in the form

q ' qnonrel

(
1− V0− E0

kin

4m

)
(78)

where

qnonrel=
√

2m(V0− E0
kin) (79)

is the standard nonrelativistic quasi-momentum. Then, the relativistic penetration coefficient
reads

Drel ' Dnonrel

1+ L(V0− E0
kin)

√
V0− E0

kin

2m

 . (80)

It follows from this expression that the relativistic corrections depend on three parameters:
barrier height,V0, barrier width,L, and particle mass,m. Figure 3 demonstrates the increase
of the ratioDrel/Dnonrel with the increase of the barrier width.

It is clear that the relativistic effect results, generally, in an enhancement of the
penetration ability as compared with the nonrelativistic approach. At the same time, as
follows from equation (80), their ratio will be the largest whenE0

kin → 0, i.e. when the
initial kinetic energy of the incident particle decreases as compared with the barrier height
V0. This has a rather simple explanation. The relativistic phenomenon under consideration
is due to relativistic values of the subbarrier quasi-momentum,q. First, q is large enough
to give rise of the relativistic effects. On the other hand, it is always smaller than the
nonrelativistic quasi-momentum as it is evidently seen from equation (78) and hence the
relativistic penetration coefficient is always larger than the nonrelativistic one. Indeed, with
making use of equation (77) we can write the ratio in the form

Drel

Dnonrel
∝ exp [2L(qnonrel− q)] = exp

(
2Lqnonrel

V0− E0
kin

4m

)
.

Thus, the ratioDrel/Dnonrel goes up with decreasing initial kinetic energy of the incident
particle and its maximum corresponds to zero initial kinetic energy.

Let us introduce the quantity

δr = LV0

√
V0

2m
(81)

which is the maximum relative correction to nonrelativistic penetration coefficient that arises
whenE0

kin = 0 (see equation (80)) and thus the maximum of(Drel/Dnonrel) is 1+ δr. Using
δr, it is possible to formulate the following critera:
• if δr � 1, then the standard nonrelativistic approach is sufficient enough for the

description of tunnelling;
• if δr 6 1, then the subbarrier relativistic effects should be taken into consideration in

the tunnelling process.
Obviously, the nonrelativistic approximation is always applicable out of the barrier

region whenE0
kin � m.

Examples of calculating the ratioDrel/Dnonrel for more realistic valuesV0 = 100 eV
(figure 3(b)) andV0 = 20 eV (figure 3(c)) show that the subbarrier relativistic effect for
atomic scales, i.e. in the standard solid state problems, leads to corrections not exceeding a
few per cent.

The factorSb ≡ LV0 in equation (81) characterizes the barrier strength. We note that
within the accepted system of units 1 eV× 1 Å = 1

1973. But the usual atomic scales are
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Figure 4. π+ meson potential energy in the field of a heavy nucleus (e.g.238U): r1 is the
nuclear surface radius,r2 is the radius at which a particle comes under the Coulomb barrier
V (r) = Ze2/r, i.e. r2 = Zα/E0

kin.

V0 ∼ 10 eV andL ∼ 10 Å, so that for typical solid problemsSb ∼ 1
20. On the other hand,

it is not the case for nuclear scales where 1 MeV× 1 fm= 1
197. Indeed, for typical nuclear

problemsV0 ∼ 10 MeV andL ∼ 10 fm, so thatSb ∼ 1
2. Therefore, subbarrier relativistic

effects are quite pronounced on the nuclear scale. In fact, it provided reason to revise the
tunnelling problem in nuclear physics.

3.3. Tunnelling of positively charged particles through the Coulomb barrier of heavy nuclei

We consider the capture of a low-energy positively charged particle, for instance, aπ+

meson, by a heavy nucleus under a central collision. Three nuclei207Pb, 238U and Lr260Lr
are taken as examples. Their nuclear plus Coulomb potential are shown schematically in
figure 4. The nuclear surface radius isr1 = 1.4 A1/3 fm, whereA is the atomic nucleus
number. Since we discuss the head-on collision of the particle with heavy nucleus, a
one-dimensional approximation is applicable.

The Coulomb potential is

VCoul(r) = Zα

r
(82)

whereZ is the number of protons in the nucleus andα = e2 = 1
137. To be successful,

we must take into account the relativistic corrections beyond the ‘root’ Hamiltonian which
are due to the spatial gradients of the external fieldV (r) = e A0 = Zα/r. The first
correction reads as (see equation (40))(e/8m2)∇2A0 and equals zero for the Coulomb
potentialA0 = Ze/r. We neglect corrections of higher order. Thus, for a description of the
central capture of a positively charged particle by the Coulomb barrier of a heavy nucleus,
we use the stationary version of equation (54) withV = VCoul(r).

Using the standard arguments, the penetration coefficient in quasiclassical approximation
is evaluated by (the probability for the particle moving from turning pointr2 to reach the
distancer1 under the barrier)

D = D0 exp[−2πη(r1, r2)] (83)
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where we introduce the quantity

η(r1, r2) ≡ 1

π

∫ r2

r1

q(r) dr (84)

with

qnonrel(r) =
√

2m[V (r)− E0
kin] (85)

for the nonrelativistic approach and

qrel(r) =
√

[2m+ E0
kin − V (r)][V (r)− E0

kin]. (86)

for the relativistic one.
Straightforward evaluation of equation (84) results in

η(r1, r2) = 1

π
[I (r2)− I (r1)] (87)

with

Inonrel(r) = rqnonrel(r)− η0 arcsin

(
1− 2

E0
kin

VCoul(r)

)
(88)

for nonrelativistic approach and

Irel(r) = rqrel(r)− γ η0 arcsin

(
γ − k2

mVCoul(r)

)
− Zα arcsin

(
γ − VCoul(r)

m

) (89)

for relativistic one. We have introduced above the notations

η0 ≡ Zαm

k
= η(r1 = 0, r2) (90)

which means the value ofη when penetration through the Coulomb barrier tor1 = 0 occurs;
k2 = 2mE0

kin for the nonrelativistic approach andk2 = E0
kin(E

0
kin + 2m) for the relativistic

one; γ = E/m, whereE = E0
kin + m is the total energy. The radius,r2, of a particle

encountering the Coulomb barrier is determined by the kinetic energy,E0
kin, of the incident

particler2 = Zα/E0
kin.

As follows from equation (77), the pre-exponential factors in both approaches at
E0

kin � m coincide. Therefore, the ratioDrel/Dnonrel will be determined by the exponential
dependence only. This ratio is shown in figure 5(a) as a function of the kinetic energy of
an incidentπ+ meson. It is clear that at energies of the order of a few MeV, the difference
can reach 20%. Thus, the capture cross section increases over that calculated by means
of the nonrelativistic penetration coefficient. To estimate the effect, the same calculations
are performed for the muon and the proton (the Coulomb barrier is taken in the same form
as in figure 4). The results of these calculations are shown in figure 5(b) (muon) and in
figure 5(c) (proton). It is seen from the graphs that for muons the effect increases, whereas
for protons it is no more than 10%.

In analogy to the constant-height barrier for low-energy particles, equation (83) can be
rewritten by taking into account only the first relativistic correction in the expansion of the
qrel, equation (86). Then the approximate penetration coefficient reads (see equation (80))

D̃rel ' Dnonrel

1+
∫ r2

r1

(V (r)− E0
kin)

√
V (r)− E0

kin

2m
dr

 . (91)
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Figure 5. Penetration coefficient ratioDrel/Dnonrel as a function of the initial kinetic energy
T ≡ E0

kin of an incident particle. The penetration coefficient is evaluated for the Coulomb
barriers of the following nuclei:207Pb-curve (1),238U-curve (2),260Lr-curve (3); (a) capture of
π+ meson, (b) capture ofµ+ meson, (c) capture of proton.

To verify by the pion capture example whether this approximation is good enough, we
evaluated the relative error given by the approximate penetration coefficient(Drel −
D̃rel)/Drel, whereDrel is the ‘exact’ quantity calculated by the use of equation (89). It
appears that the maximum error relative to the ‘exact’ relativistic penetration coefficient of
the Coulomb barrier is no more than 1–3%.

Approximation (91) makes it possible as in the case of the constant height barrier, to
formulate a necessary condition for taking into account the subbarrier relativistic corrections
in the case of a low-energy particle tunnelling through the Coulomb barrier of a nucleus.
Indeed, it is seen that a maximum relativistic effect will be observed atE0

kin → 0, i.e. when

1r ≡
∫ ∞
r1

V (r)

√
V (r)

2m
dr = Z

137

√
2V0

m
(92)

is comparable with unity. In equation (92),V0 is the potential energy value on the nucleus
surfaceV0 = Zα/r1, which, for the nuclei considered, is within 14–16 MeV. Thus, if
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1r � 1, the subbarrier relativistic effects can be neglected. Meanwhile, the maximum
correction to the nonrelativistic penetration coefficientD̃rel = Dnonrel(1+ 1r) in case of
a central particle capture by the nucleus238U, is for π+ mesons1r = 0.32, for muons
1r = 0.36, and for protons1r = 0.12.

4. Summary

The Dirac and Klein–Gordon equations were examined in an external electromagnetic field.
It was proved that for a special class of fields, namelyAν = (A0(t),A(r)), the Dirac
equation in a nonrelativistic approximation splits exactly into two Schrödinger-like equations
with Hamiltonians which describe the positive and negative branches of the energy spectrum.
For positive energy states the Hamiltonian has the form (36), and with a minus sign before
the square root it is the Hamiltonian for negative energy states. For an arbitrary external
electromagnetic fieldAν = (A0(t, r),A(t, r)), the structure of the Hamiltonian is still
the same except for new additional terms which are proportional to the derivatives of the
electromagnetic field and represent an expansion in 1/c. The same result was obtained
for the Klein–Gordon equation, which reduces for the above special external field to the
Schr̈odinger-like equation (51) for a wavefunction which is exactly normalized to unity.
For an arbitrary external electromagnetic field additional terms appear, as in fermion case.
Actually we showed that the nonrelativistic Dirac Hamiltonian

H nonrel
D =

√
m2+ (−i∇− eA(t, r))2− eσ ·B(t, r)+ V (t, r) (93)

and the nonrelativistic Klein–Gordon one

H nonrel
KG =

√
m2+ (−i∇− eA(t, r))2+ V (t, r) (94)

describe positive energy states andV (t, r) = eA0(t, r)+ (truncated series) is a potential
energy, where a series is an expansion in 1/c in combination with derivatives of the external
field. On the other hand,V (t, r) can be regarded as an effective or phenomenological
potential energy which stands instead of the series of the relativistic corrections.

We derived the boundary conditions and expression for current for the Schrödinger

equation with the HamiltonianH =
√
m2−∇2 + V . This Hamiltonian was used for a

description of the tunnelling phenomenon. The particle penetration in a potential barrier of
a constant height and in the Coulomb barrier were considered. It was shown that relativistic
effects give an appreciable contribution to the penetration coefficient. However, for the
barriers which are relevant in solid state physics the relativistic corrections are small.
It is not the case on the nuclear scale. For example, the additional contribution of the
relativistic corrections for penetration of theπ+ meson through the Coulomb barrier of a
heavy nucleus can be around 20%. An interesting behaviour of the relativistic contribution
to the penetration coefficients appears: they go up with decreasing initial kinetic energy
of the incident particle. This intriguing result can be evidently understood if we consider
the ratio of the penetration coefficients for the constant-height barrier in the quasiclassical
approximation. In fact, with taking into account the first relativistic correction the ratio
reads

Drel

Dnonrel
= exp

(
2Lqnonrel

V0− E0
kin

4m

)
whereqnonrel=

√
2m(V0− E0

kin) andL is the barrier width (see equation (80)). Hence, the
maximum of the ratioDrel/Dnonrel corresponds to zero initial kinetic energy.
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We showed that the relativistic effects always increase the penetration coefficient which
is well seen from the last equation.
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Appendix

From a combination of the Schrödinger equation (54) and its Hermitian conjugate we obtain

∂ρ(t, r)

∂t
− i

(
ψH0ψ

∗ − ψ∗H0ψ
) = 0 (A1)

whereH0 =
√
m2−∇2 andρ(t, r) = ψ∗(t, r)ψ(t, r). Hence it follows that in the one-

dimensional case the current is

j (t, x) = j (t, x0)− i
∫ x

x0

[ψ(t, x ′)H0(x
′)ψ∗(t, x ′)− ψ∗(t, x ′)H0(x

′)ψ(t, x ′)] dx ′. (A2)

If we substitute in this expression the Fourier expansion of the wavefunction into the space
variable and perform explicitly the integration overx ′, we have

j (t, x) =
∫ ∫

dk dk′ ψ(t, k)ψ∗(t, k′)
k + k′√

m2+ k2+√m2+ k′2 ei(k−k′)x . (A3)

In essence, this can be regarded as final expression for the current in momentum
representation. It can be rewritten in coordinate representation in the compact form

j (t, x) =
[

k̂(x)− k̂(x ′)
H0(x)+H0(x ′)

ψ(t, x)ψ∗(t, x ′)

]
x ′=x

. (A4)

The same expression can be obtained by a direct integration of equation (A2) if we represent
the Hamiltonian in the form of a series.

It is obvious that in the three-dimensional case the current vector can be determined by
a single given vector value—the momentum. Thus equation (A4) or (A3) will be satisfied
for each component of the current vector, and equation (57) is valid. Indeed, after a Fourier
expansion of the wavefunction, equation (57) transforms to

ji(t, r) = − i

(2π)6

∫ ∫
d3k d3k′ ψ(t,k)ψ∗(t, k′)

i (ki + k′i )√
m2+ k′2+√m2+ k′2

eir·(k−k′)

= − i

(2π)6

∫ ∫
d3k d3k′ ψ(t,k)ψ∗(t,k′)

× ki + k′i
k2− k′2 (

√
m2+ k′2−

√
m2+ k2)eir·(k−k′). (A5)
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We wish to check the expression for divj. After taking derivatives ofxi and summing over
i the fraction in the final integral reduces to unity, and we finally obtain

div j(t, r) = −i
∫ ∫

d3k d3k′ ψ(t,k)ψ∗(t,k′)(
√
m2+ k′2−

√
m2+ k2)eir·(k−k′)

= − i(ψH0ψ
∗ − ψ∗H0ψ) (A6)

as has to be obtained by equation (A1).
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